Indian Statistical Institute Bangalore Centre B.Math Third Year 2014-2015 Second Semester

Back Paper Examination

Date : 28.05.15

Statistics IV

Answer as much as you can. The maximum you can score is 120. The notation used have their usual meaning unless stated otherwise.

Time :- 3 hours

1. Consider the following three-way table. Take X = convict's race, Y = death penalty and Z = victim's race.

		Death Penalty		
Victim's Race	Defendant's Race	Yes	No	Percent Yes
White	White	53	414	11.3
	Black	11	37	22.9
Black	White	0	16	0.0
	Black	4	139	2.8
Total	White	53	430	11.0
	Black	15	176	7.9

(a) Write down the partial tables for different Z and also the marginal table.

(b) Find the estimates (say \hat{P}) of P(Y = D|X = Q), Q = W, B and then find $\hat{P}(Y = D|X = B) - \hat{P}(Y = D|X = W)$ from all three tables.

(c) Explain why the values in partial tables are in the reverse direction of the marginal table. $[6 + 3 \ge 2 + 6 = 18]$

2. Suppose X_1, \dots, X_n is a random samples from a continuous distribution and R_i is the ranks of X_i . Let $R = (R_1, \dots, R_n)'$.

(a) Show that R is uniformly distributed over the set of all permutations of the integers $\{1, \dots n\}$.

(b) Find the following probabilities : (i) $P[R_i = r]$ and $P[R_i = r, R_j = s], i \neq j$.

- (c) Show that
- (i) $E[R_i] = n(n+1)/2$.
- (ii) $Var[R_i] = (n+1)(n-1)/12.$
- (iii) $Cov[R_i, R_j] = -(N+1)/12, i \neq j.$ [4 + (2 + 3) + (2 + 4 + 4) = 19]

3. (a) What is meant by (i) a nonrandomised and (ii) a randomised decision rule ? What is a risk function ? How is the loss function related to the risk function of a (i) nonrandomised and (ii) a randomised decision rule ?

(b) Define (i) a minmax rule and (ii) a Bayes'rule w.r.t. a prior distribution π . What is the Bayes risk of a decision rule w.r.t. a prior distribution π ?

(c) Consider the problem of estimation of a real parameter θ with loss proportional to squared error.

(i) Show that a Bayes' decision rule w.r.t. a prior is the mean of the corresponding posterior distribution of θ .

(ii) Suppose a Bayes' decision rule δ_0 w.r.t. a prior π is also unbiased for θ . Then show that the Bayes risk of $\delta_0 = 0$.

(d) Suppose X follows normal distribution with mean θ and variance 1. Consider a prior distribution π which is normal with mean 0 and variance σ^2 .

Show that the M.L.E δ_1 is not a Bayes' rule. Also show that the Bayes risk of δ_1 tends to the Bayes risk of δ_0 as σ tends to ∞ .

[(2 x 4 + 3) + (2 + 2 + 3) + (4 + 6) + (4 + 4) = 36]

4. Consider a subset S of a k-dimensional Euclidean space.

(a) When is S said to be bounded from below ? What is the lower boundary $\lambda(S)$ of S ? When is it said to be closed from below ?

(b) Suppose S is convex and is bounded from below. Show that the lower boundary of S is not empty.

(c) Suppose Θ is finite the risk set \mathcal{R} is bounded from below and closed from below. Consider the class of decision rules $D_0 = \{\delta : R(\delta) \in \lambda(\mathcal{R})\}$. [Here the ith co-ordinate of $R(\delta)$ is $R(\theta_i, \delta), \theta_i \in \Theta$]. Show that D_0 is a minimal complete class.

$$[(2+3+1)+8+13=27]$$